
Footprint creation for the
open- source layout program “PCB”

Author e-mail Date Changes made

Stephen Meier 2003, 2004 Wrote initial document.

Stuart D. Brorson sdb@cloud9.net 12/27/04 Formatting changes, added
more tables & info.

Stuart D. Brorson sdb@cloud9.net 01/29/05 Included dimensioned pad
drawing, incorporated
changes suggested by Dan
McMahill, updated
ElementArc, other
improvements.

Copyright © 2003 Meier Rippin L.L.C.
Copyright © 2004 MRA Tek LLC

Copyright © 2004, 2005 Stuart D. Brorson

Introduction

PCB is an open- source program used for physical design of printed circuit boards (i.e.
board layout). PCB is a freely-downloadable, GPL'ed application which runs on Linux, BSD,
and other unicies supporting X11. PCB is part of the gEDA suite
(http:/ /www.geda.seul.org/). The homepage of PCB is http:/ /pcb.sf.net / . If you are
unfamiliar with PCB design or the gEDA suite, you should take time to familiarize yourself
with these topics before continuing to read this document.

When designing a printed circuit board, one of the most important things you need to
define are the land patterns -- or footprints -- for each device. Like any layout program, PCB
needs a footprint for each device. The footprint tells PCB how to draw the device pads or pin
holes, silk screen outline, device name, and other properties associated with an individual
component. The footprints used in PCB are usually stored in an external file, and are read
into PCB itself when the PCB is created or updated. One of the major advantages of using
PCB is that the footprint files are plain ASCII, and are well structured. The purpose of this
document is to detail how PCB footprints (land patterns) are defined in the footprint files,
and explain how to use them effectively during layout using PCB.

An unusual feature of PCB is that it supports two entirely separate footprint libraries with
two entirely different footprint mechanisms. This is because PCB is an old program which
has been developed by many different people for many different platforms over more than
two decades. Due to its history, PCB has had to handle varying limitations imposed by
target platform speed, memory size, and so on.

The first footprint system is referred to as the “oldlib”, or the “M4 library”. This system is
historic (some say archaic); it relies upon using the GNU macro language M4 to generate
footprints on the fly. Footprints living in the M4 library are prefixed by a tilde (“~”), for
example, “~geda”. This document does not cover usage of the M4 library! Indeed, we
recommend that you avoid the M4 library -- it's internal workings are obscure, and many of
the footprints are unchecked and are possibly wrong (e.g. wrong pin hole sizes). However,
the M4 library is large, has many adherents, and it is an integral part of PCB, so it probably
won't disappear anytime soon.

The second footprint system for PCB is called the “newlib”. Newlib footprints are defined
using ASCII text files which define each graphical primitive which makes up an entire
footprint. This document focuses exclusively on defining and using newlib footprints.
You can use newlib footprints which are distributed with PCB, or you can create your own,
and put them in a dedicated directory.

There are several ways to create a newlib footprint using PCB. For example, you may create
a footprint graphically within PCB by drawing it, and then saving it out. This procedure is
documented in the main PCB documentation; we will not cover this procedure here. This
document will concentrate on how footprints are defined within the ASCII footprint file
itself. Using this information, you can either create a footprint from scratch using a text
editor, or copy an existing footprint, and edit its parameters to correspond exactly to the
footprint which you wish to create. Power users of PCB usually prefer the latter method for
footprint creation, because it's easy to start with a known symbol, and manually editing the

footprint file gives you the most control over your footprint.

Understanding how to correctly set up footprints in a footprint file is important. A footprint
can critically effect the manufacturability of the board it lives on. If a footprint's pads are in
the wrong place, or the solder mask relief is incorrectly defined, it can be impossible to
attach the device to its pads. If the solder mask doesn't cover traces near pads, the traces
may become soldered to the pads. Boards using footprints that have the pads in the correct
spot but of the wrong size can have a reduced manufacturing yield and possibly a reduced
life. Therefore, properly defining your footprints is a critical part of creating a working PCB.
See the standards document IPC-SM-782A “Surface Mount Design and Land Pattern
Standard” for a more complete discussion of the requirements and impacts of surface
mount patterns.

How footprints are used in your .pcb file

In the PCB file itself (usually called something like foo.pcb), an individual footprint is called
an “Element”. If you examine a .pcb file, you will see many Element declarations
throughout the file – you should have one declaration for each component you have placed
on your layout.

The first line of the Element entry holds top- level information about the footprint itself.
Within the element are held the atomic graphical elements making up the footprint. The
atomic graphical elements include solder pads, through- holes for pins, lines drawn on the
silkscreen layer, and other items which comprise a footprint. For example, the following is a
simple PCB land pattern for an 0603 chip resistor.

Element(0x00 "Surface Mount Chip Resistor 0603" "R0" "" 0 0
-31 -82 2 100 0x00)
(

Pad(-2 0 2 0 39 30 50 "pad 1" "1" 0x00000100)
Pad(65 0 69 0 39 30 50 "pad 2" "2" 0x00000100)
ElementLine(-21 -35 87 -35 5)
ElementLine(87 -35 87 35 5)
ElementLine(87 35 -21 35 5)
ElementLine(-21 35 -21 -35 5)

)

Within the parentheses after “Element” is information pertaining to the entire footprint,
such as its position, its refdes, and so on. Following the top- level information, you can see
two “Pad” graphical elements. This example 0603 chip resistor requires two pads; other
devices may require hundreds of them, leading to hundreds of “Pad” lines in such a part.
The information within the “Pad” line specifies the size of the solder pad, any clearance
around the pad, each pad's name and number, and other attributes. The “ElementLine”
graphical element produces a line drawn on the silkscreen layer. In this example, there are
four “ElementLine” elements drawn on the silkscreen layer, corresponding to a box around
the 0603 footprint. The information within the “ElementLine” line specifies the width and
position of the lines which are drawn on the silkscreen layer.

Further details about defining these graphical elements are provided in latter sections of
this document.

Peculiarities of PCB

Due to its long, checkered history of development, PCB has a number of quirks which you
need to be aware of. This section attempts to list some of these quirks relevant to creating
and editing footprint files.

● Coordinate system. It is particularly important to remember that PCB uses a standard
computer graphics coordinate system, and not a Cartesian coordinate system. This
means that X increases to the right (as is normal), but Y increases downwards . Please
keep this in mind when defining the graphical locations of footprint elements.

● Units. Originally, PCB used mils (1/1000ths of an inch) as the basic unit of measure.
However, recent upgrades to the program have improved its resolution to 1/100 mils (1e-
5 in). Both units are used freely in the footprint files. By definition, units held in round
parentheses “()” are mils . Units contained in square braces “[]” are in 1/100 mils . Be
aware of this confusing dichotomy, and always check how your units are specified!

● Footprint libraries . The original PCB footprint library was written using the macro
language M4. Common opinion about the M4 footprint library holds that it might have
been a clever idea back when the Amiga was considered a cutting- edge machine, but it is
now an obscure and hard- to- support boat- anchor. Fortunately, a modern graphical
footprint library system – newlib – has been developed for PCB. Most new footprints
contributed to the PCB project use the newlib footprint syntax. The newlib library is the
footprint library syntax described in this document.

● PCB's Solder Mask Relief Implementation. PCB only allows for the PADS to determine
the solder mask relief size and shape. Therefore creating Gang shadow masks windows
(see Glossary) can only happen by setting the PAD sizes and correctly placing the
individual components close enough together such that the shadow mask windows
merge.

● Keepouts. Currently, PCB doesn't have the concept of a keepout. Therefore, you must
track any keepout constraints manually. A poor man's component keepout may be
produced by encircling your footprint with a boundary drawn on the silkscreen layer.
The silkscreen should extend a little bit beyond the part's outline in all directions. Then,
during layout manually verify that no silkscreen boundaries touch each other. Note that
no DRCs will show up using this method, so you must take care when placing and
inspecting your parts.

Developing a new footprint for PCB – work flow

When creating a new footprint file, you will typically follow a work flow like this:

1. Determine the mark (center) of the footprint. This is often either the center of the part, or
is pin 1.

2. Determine the rotation of the device around the mark. In PCB, this may be 0, 90, 180, or
270 degrees.

3. Determine the Grid placement courtyard and its relationship to the center. This is
particularly important if you plan to assemble your design using a pick- and- place
machine, since the machine wants to place components at particular positions on the
grid. Consult your assembly house for more information about their requirements. If
you are hand- assembling your board, you don't need to worry about this.

4. Determine the soldering method to be used. Wave and reflow soldering processes place
requirements upon the pad dimensions, as well as the solder mask clearances. In
particular, make sure you understand how your mask should be applied. Further
information about this topic can be obtained from IPC documents, or from your
assembly house.

5. Determine the pad locations and sizes. This is usually found in the materials supplied by
the part vendor. Alternately, you can consult IPC documents which specify
recommended footprints for many common parts. Keep in mind that pad location and
size depend – to some extent – upon your board manufacturer 's tolerances. Again, either
use conservative numbers for your pad dimensions or speak to your board house about
their recommended design rules.

6. Determine the solder mask application method and its tolerances.
7. Determine the solder mask relief size. This depends upon the type of soldering process

you intend on using, the tolerances your board house can meet, and other factors. It is
always best to use conservative numbers, or consult with your board manufacturer and
assembly house first.

8. Open a footprint file in a directory on your PCB search path. Typically, you will want to
name the file something suggestive of the footprint(s) held within it. One or more
footprints (Elements) may live within a single file. No naming convention is enforced by
PCB. Therefore, no file name suffix is required, although you may want to devise your
own naming convention. Examples might be “Res_0805_large.fpt” or “TQFP-
44.pcbfootprint”.

9. Create the Element macro within the footprint file.
10.Within the Element body, add a Pad line for each component pad.
11.Within the Element body, add a Pin line for each component through- hole pin. You can

also use a Pin line to define a through- hole for component mounting.
12.Within the Element body, add ElementLine lines to create the pattern outline.

ElementLine will produce a line on the silkscreen layer. The pattern outline needn't
encircle the grid placement courtyard but doing so can be convenient for correct
placement.

Anatomy of a footprint

To understand the parameters used in defining a footprint, consider the footprint used by
SMT resistors. A footprint is shown in Illustration 1 below.

Data for different resistor sizes are presented in the table.

Type C X Y Z G Grid
'0402 51.2 27.5 35.4 86.6 15.7 39.4x118.1
'0603 66.9 39.4 43.3 110.2 23.6 157.5x118.1
'0805 74.8 59.1 51.2 126.0 23.6 157.5x315.0
1206 110.2 70.9 63.0 173.2 47.2 157.5x393.7
1210 110.2 106.3 63.0 173.2 47.2 118.1x393.7
2010 173.2 106.3 70.9 244.1 102.4 118.1x551.2
2512 220.5 126.0 70.9 291.3 149.6 315.0x629.9

Dimensions C, X, Y, Z, G and Grid are all in mils. Data is derived from the table on page 73
Of IPC-SM-782A “Surface Mount Design and Land Pattern Standard”

Each PCB Pad impacts several layers. If the Pad is on the component surface it impacts the
component layer, the component mask (component side solder mask relief) and the
component paste. If the component layer has a polygon then the polygon is cleared away
from the pad by an amount entered in the Pad macro.

Each instance of a macro needs its parameters selected for the manufacturing techniques
used to place and solder the components to the board. The standards document (IPC-SM-
782A) will cover these in detail. The scope of this paper will be how to use the standards
document to generate suitable PCB
land patterns.

Illustration 1Footprint (land pattern) of SMT resistor.

Footprint creation do's and dont's

● Do – Make sure your solder pads are large enough for SMT devices. The pad should
provide sufficient room for development of a solder meniscus between your part and the
pad itself. Vendor recommended pads are usually OK. However, it sometimes helps to
increase the pad size by a few mils in each dimension if you have the real estate on your
board. However, don't go overboard on fine- pitch parts; if the pads get too close
together, you run the risk of creating solder bridges between adjacent pads!

● Do – Double check all your footprints (and your layout too). A sizable number of board
mistakes arise from simple footprint errors due to carelessness. Things to check for:

● Are your pin holes large enough to fit the pins? It doesn't hurt to oversize
your holes by a few mils to ensure that everything will fit together.

● Are your pads large enough? Is the pad spacing correctly set?
● PCB uses mils as the unit of measure for footprints. Sometimes, vendors use

metric units in defining footprints. This is particularly true for connectors.
Make sure you have converted any metric units into mils in your footprints.

● Are you sure you have the right footprint for the package you have specified?
(I have personally seen several cases where an SO-16 footprint was placed for
an MSOP-16 part. One of these was my fault! Mistakes like this cost money.)

● Mechanicals. Make sure all your parts will fit, and that you haven't squeezed
them too close together. Also, if your board must fit into a constrained space,
or satisfy height restrictions, make sure that you have properly incorporated
these constraints into your design. Since PCB doesn't have the concept of
keepouts or height restrictions, you need to verify these constraints manually.

● Do – When you are done with your layout, make sure you inspect the Gerber files using a
Gerber viewer. This important step will help you catch errors which might not have
shown up within PCB. Several free Gerber viewers exist on the net; a quick Google search
will identify several for you. On Windows, I use “GCPrevue”. On Linux, a decent Gerber
viewer is “gerbv”.

● Do – Perform a trial placement using your parts. Once you have created your PCB, print
it out on a PostScript printer using 1:1 scaling, and place all your parts onto their
footprints. This is a great way to catch footprint (and other layout) errors.

● Do – Use solder mask over bare copper to prevent solder migration. Solder mask
tolerances: Screen printed solder masks can be used to produce masks with 15 mil
spacing. Photo Imaged solder masks can achieve spacings down to around 3 mils.

● Do – Inspect your layout and verify that all plane regions are connected to their
respective nets. Thermals are placed manually in PCB, so it is easy to forget them. This is
particularly important if your board has internal plane layers, since you can't easily
rework an internal layer. You might also want to verify that the plane layers do have voids
(antipads) around non- connected vias or pins.

● Do – Inspect your layout to verify that all text annotations are done on the silkscreen
layer. PCB's DRC checker will not identify shorts occurring because of text on a metal

layer. Also, verify that your silkscreened text doesn't get too close to metal pads – if your
board manufacturer has registration problems, silkscreen can get on your pads, and you
won't be able to solder to that pad.

● Don't – Solder Masks should not cover a fiducial or the fiducial clearance area since it
could cause oxidation and interfere with automated location of the fiducial.

● Don't – Solder Mask contamination to component pads can cause failures. Insufficient
solder mask leaving exposed coper can cause solder to make unintentional connections.

Element

The “Element” tag holds an entire footprint for a particular part. The Element head holds
information pertinent to the footprint as a whole. Within the Element macro body are the
individual graphical components of the footprint. For example, each pad or pin for the
device needs a pad or a pin hole. Generally a silkscreen outline is also provided. The body is
the code with in the parentheses.

Format
Element (element_flags, description, pcb-name, value,

mark_x, mark_y, text_x, text_y,
 text_direction, text_scale, text_flags)
(

individual graphical components, such as Pad, Pin,
or ElementLine.

)

Element [element_flags, description, pcb-name, value,
mark_x, mark_y, text_x, text_y,

 text_direction, text_scale, text_flags]
(

individual graphical components, such as Pad, Pin,
or ElementLine.

)

Note that either mils or 1/100's of a mil are allowable for the Element tag. This is signaled
by the use of round “()” or square “[]” brackets.

Detailed description
Item Allowed value Explanation Comment

element_flags unsigned hex value

description string Text description of
footprint

Entered by user.

pcb- name string Refdes used on this
particular PCB

This field is filled out
by PCB itself. Leave
blank when you
define the footprint
file.

value string value of component
on this particular
PCB

This field is filled out
by PCB itself. Leave
blank when you
define the footprint
file.

Item Allowed value Explanation Comment

mark_x Decimal integer (mils
or 1/100 mils)

This is the X location
of the footprint's
mark. It tells PCB
where to place the
footprint when first
read into your layout.
Later, when you place
the component, PCB
will reset this value.

Usually set to 10 mil
so part's initial
position is on
working area of
board.

mark_y Decimal integer (mils
or 1/100 mils)

This is the X location
of the footprint's
mark. It tells PCB
where to place the
footprint when first
read into your layout.
Later, when you place
the component, PCB
will reset this value.

Usually set to 10 mil
so part's initial
position is on
working area of
board.

text_x Decimal integer (mils
or 1/100 mils)

Refdes initial position
X coordinate w.r.t.
mark location. Later,
PCB will reset this
value when you move
the refdes.

Must experiment in
order to find optimal
initial location for
text.

text_y Decimal integer (mils
or 1/100 mils)

Refdes initial position
Y coordinate w.r.t.
mark location. Later,
PCB will reset this
value when you move
the refdes.

Must experiment in
order to find optimal
initial location for
text.

text_direction decimal integer 0 = horizontal

1 = CCW 90 deg

2 = 180 deg

3 = CW 90 deg

text_scale decimal integer Usually set to 100.

text_flags unsigned hex value

Example
Element(0x00 "Surface Mount Chip Resistor 0603" "" "" 0 0
-31 -82 0 100 0x00)
(

Pad(-2 0 2 0 39 30 50 "pad 1" "1" 0x00000100)
Pad(65 0 69 0 39 30 50 "pad 2" "2" 0x00000100)
ElementLine(-21 -35 87 -35 5)

ElementLine(87 -35 87 35 5)
ElementLine(87 35 -21 35 5)
ElementLine(-21 35 -21 -35 5)

)

This example defines an 0603 SMT resistor having two solder pads and four ElementLines
on the silkscreen layer to define the land pattern. Note that the dimensions held in this
example are in mil units because they are held in round brackets.

Pad

The Pad element is held within the body of a footprint (Element). It describes a single
rectangular metalization serving as a land pattern for an SMT device.

Format
Pad (x1 y1 x2 y2 thickness clearance mask name pad_number
flags)

Pad [x1 y1 x2 y2 thickness clearance mask name pad_number
flags]

Detailed description
Item Allowed value Explanation Comment

x1 Decimal integer (mils
or 1/100 mils)

X coord of first point
of line segment. See
figure

y1 Decimal integer (mils
or 1/100 mils)

Y coord of first point
of line segment. See
figure

x2 Decimal integer (mils
or 1/100 mils)

X coord of second
point of line segment.
See figure

y2 Decimal integer (mils
or 1/100 mils)

Y coord of second
point of line segment.
See figure

thickness Decimal integer (mils
or 1/100 mils)

Width of metal
surrounding line
segment. See figure

clearance Decimal integer (mils
or 1/100 mils)

Separation of pad
from other
conductors on any
layer. See figure.

This is separation –
not width. Also note
factor of ½ in
definition. See figure.

mask Decimal integer (mils
or 1/100 mils)

Width of solder mask
relief. See figure.

The solder mask
relief, is the area
around the pad
where the solder
mask is not applied.

name string Name of pad.
Arbitrary
identification string.

Can be e.g. pad_1,
plus, or any other
string.

Item Allowed value Explanation Comment

pad_number string Pad number. Used in
attaching rats, so it
must be consistent
with the definition in
the netlist.

flags hex value Defined in “Flag”
section below.

As shown in the figure below, a pad's dimensions are defined by a line segment with
endpoints (x1, y1) and (x2, y2). All other parameters defined in relationship to this line
segment.

Notes
● In the PCB development release 1.99o the entered points (x1,y1) and (x2, y2) are re-

arranged such that x1 is the smaller of x1 and x2. Similarly y1 becomes the smaller of y1
and y2.

● Pads of zero thickness will not be drawn.

Example 1

This pad was created along a line 20 mil long which is oriented along the x axis. The
completed pad became 10 mils longer do to the thickness parameter. The thickness
parameter also made the pad 10 mils wide along the y axis. In order to make a pad a
particular length you need to subtract the thickness parameter from the start and end
points.

Example 2

Clearance is the area that is cleared from any polygon that the pad is placed within.

Illustration 2Pad example 1

Example 3

It is important to note that like the pad metalization itself, the solder mask relief is located
with respect to the line segment that the pad is located upon.

Pin

The Pin element is held within the body of a footprint (Element). It defines a single through
hole with surrounding metal pad. The Pin macro is usually used to create a footprint for a
through- hole part. It can also be used to create a through- hole used for mounting parts to
the board, or for mounting the board itself.

Format
Pin(x y Thickness Clearance Mask DrillHole Name Number
Flags)

Pin[x y Thickness Clearance Mask DrillHole Name Number
Flags]

Detailed description
Item Allowed value Explanation Comment

x Decimal integer (mils
or 1/100 mils)

x coordinate of pin

y Decimal integer (mils
or 1/100 mils)

y coordinate of pin

Thickness Decimal integer (mils
or 1/100 mils)

surrounding
metalization
diameter

Clearance Decimal integer (mils
or 1/100 mils)

separation of metal
from other
conductors on any
layer

This is separation –
not diameter. Also
note factor of ½ in
definition. See figure.

Mask Decimal integer (mils
or 1/100 mils)

diameter of solder
mask relief.

DrillHole Decimal integer (mils
or 1/100 mils)

diameter of drill hole

Name string Pin name. This is an
arbitrary name for
the pin.

Number decimal integer Pin number. This
value is used by PCB
to attach nets.

Flags hex value Defined in “Flag”
section below.

The various dimensions defining a pin are shown in the illustration below.

Example
Pin[5400 -11200 8000 2000 9000 4300 "Pin_6" "6" 0x02004001]

Note that the dimensions held in this example are in 1/100 mil units because they are held
in square brackets.

ElementLine

The ElementLine macro draws line segments on the silk screen layer associated with the
layer the device is placed upon (component or solder).

Format
ElementLine(x1 y1 x2 y2 Thickness)

ElementLine[x1 y1 x2 y2 Thickness]

Detailed description
Item Allowed value Explanation Comment

x1 decimal integer (mils
or 1/100 mils)

x coordinate of
segment start point

y1 decimal integer (mils
or 1/100 mils)

y coordinate of
segment start point

x2 decimal integer (mils
or 1/100 mils)

x coordinate of
segment end point

y2 decimal integer (mils
or 1/100 mils)

y coordinate of
segment end point

Thickness decimal integer (mils
or 1/100 mils)

Thickness of line
segment on
silkscreen layer.

Example
ElementLine [-16000 -39100 59200 -39100 1000]

Note that the dimensions used in this example are in 1/100 mil units because they are held
in square brackets.

ElementArc

An ElementArc is usually used to draw a circle or oval on the silkscreen layer. It can also be
used to draw an arc (i.e. incomplete circle) on the silkscreen layer. If the component is
placed on the top side of the board, the circle or oval is placed on the top (component) side
of the board. If the component is placed on the bottom side of the board, the circle or oval
is drawn on the bottom (solder) side of the board.

Format
ElementArc(x y Width Height StartAngle Delta Thickness)

ElementArc[x y Width Height StartAngle Delta Thickness]

Detailed description
Item Allowed value Explanation Comment

x Decimal integer (mils
or 1/100 mils)

X center position of
circle or oval.

y Decimal integer (mils
or 1/100 mils)

Y center position of
circle or oval.

Width Decimal integer (mils
or 1/100 mils)

This is horizontal
width of circle or
oval.

For circle, use Width
= Height. For oval,
Width will be
different from Height.

Height Decimal integer (mils
or 1/100 mils)

vertical height of
circle or oval.

StartAngle Decimal integer
between 0 and 360
degrees.

Starting angle of arc –
measured in degrees
clockwise from
negative X axis (i.e.
degrees clockwise
from horizontal ray
pointing to the left.)

Delta Decimal integer
between 0 and 360
degrees.

Angle swept out by
arc in degrees.
Direction of sweep is
clockwise (CW).

Usually use 360 for
full circle or oval.
Incomplete circles –
i.e. arcs -- are also
possible.

Thickness Thickness of line
segment on
silkscreen layer.

Example
ElementArc (350 -410 50 50 180 90 10)

Note that the dimensions held in this example are in mil units because they are held in

round brackets.

Important Flags

Certain features of the pins and pads making up a footprint are captured as individual bits
in the “Flag” field. The flag bits are “or'ed” into a single hex value which is incorporated
into the pad or pin declaration. This section lists a few flags which are important for
creating footprints. The entire list of flags can be found in the source code under
~pcb/src/const.h.

Detailed description
Mnenomic Hex value Explanation Comment

NOFLAG 0x0000 NULL value

PINFLAG 0x0001 This is a pin

VIAFLAG 0x0002 This is a via

HOLEFLAG 0x0008 This pin or via is only
a hole.

DISPLAYNAMEFLAG 0x0020 Display the names of
pins/pads

SQUAREFLAG 0x0100 Pin is square, not
round.

USETHERMALFLAG 0x0400 Draw pin or via with
thermal fingers.

OCTAGONFLAG 0x0800 Draw pin or via as
octagon instead of
round.

Glossary

● Solder Mask – Is a coating applied over the surface of the PCB which prevents the
covered area from being soldered to. Usually only component pads and pin holes are left
exposed. Traces left exposed can be inadvertently soldered to.

● Gang Solder Mask Window – A window large enough to cover more then one pad. Traces
not part of the net could become soldered to a near by pad.

● Pocket Solder Mask Window – A window which covers a single pad. This requires greater
tolerances in creating the solder mask. This may be required in order to run traces
between the pads.

